Rational interpolation and mixed inverse spectral problem for finite CMV matrices
نویسندگان
چکیده
منابع مشابه
Rational interpolation and mixed inverse spectral problem for finite CMV matrices
For finite dimensional CMV matrices the mixed inverse spectral problem of reconstruction the matrix by its submatrix and a part of its spectrum is considered. A general rational interpolation problem which arises in solving the mixed inverse spectral problem is studied, and the description of the space of its solutions is given. We apply the developed technique to give sufficient conditions for...
متن کاملAn Inverse Spectral Theory for Finite Cmv Matrices
For finite dimensional CMV matrices the classical inverse spectral problems are considered. We solve the inverse problem of reconstructing a CMV matrix by its Weyl’s function, the problem of reconstructing the matrix by two spectra of CMV operators with different “boundary conditions”, and the problem of reconstructing a CMV matrix by its spectrum and the spectrum of the CMV matrix obtained fro...
متن کاملEffective inverse spectral problem for rational Lax matrices and applications
We reconstruct a rational Lax matrix of size R+ 1 from its spectral curve (the desingularization of the characteristic polynomial) and some additional data. Using a twisted Cauchy–like kernel (a bi-differential of bi-weight (1−ν, ν)) we provide a residue-formula for the entries of the Lax matrix in terms of bases of dual differentials of weights ν, 1−ν respectively. All objects are described in...
متن کاملThe Inverse Resonance Problem for Cmv Operators
We consider the class of CMV operators with super-exponentially decaying Verblunsky coefficients. For these we define the concept of a resonance. Then we prove the existence of Jost solutions and a uniqueness theorem for the inverse resonance problem: Given the location of all resonances, taking multiplicities into account, the Verblunsky coefficients are uniquely determined.
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Approximation Theory
سال: 2009
ISSN: 0021-9045
DOI: 10.1016/j.jat.2008.09.003